关键词:
多视觉特征
图像分割
深度残差模块
注意力模块
摘要:
针对图像分割计算量大、噪声因素影响等问题,提出改进U-Net网络的多视觉特征图像分割方法。对同一窗口中的灰度值排序,计算像素点极大值与极小值,根据角度与像素点的关系,检测噪声点,将被污染的噪声点放入集合中,使用其它像素点替换该点,完成滤波;分别从颜色、纹理与形状三个方面提取图像的多视觉特征,为图像分割提供参考依据;利用编码器、解码器和跳跃连接层建立U-Net网络,将提取的特征作为网络输入,新增深度残差模块,经过残差学习,实现特征映射;引入注意力模块,减少特征维度,确定张量权重,利用池化层拼接特征维度,输出最终分割特征张量。实验结果表明,所提方法对于分割目标的敏感度较高,不容易出现过分割与欠分割现象。