关键词:
城市轨道
出行模式
张量分解
机器学习
归因分析
摘要:
科学的轨道交通出行模式分析是运营决策优化的重要依据。为挖掘城市轨道交通时空流动特征及其影响机理,提出一种基于非负张量分解的OD客流强度时空分布计算方法,采用融合SHAP归因分析的极端梯度提升树(eXtreme Gradient Boosting,XGBoost)对各模式OD客流强度进行拟合预测。使用城市轨道交通AFC (Automatic Fare Collection System, AFC)系统数据,从空间、时段以及出行日3个维度构建三阶客流OD张量,采用交替非负最小二乘法(Alternating Non Negative Least Squares,ANLS)实现非负CP张量分解。基于张量分解结果,从北京轨道交通344个站点连续1周16,266,966条出行数据中,提取出晨高峰长距离通勤、早高峰中短通勤、平峰休闲中转出行、晚归出行4种出行模式的时、空分布特征。基于可解释性机器学习模型,对各模式OD客流进行预测。结果表明XGBoost与CatBoost、LightGBM、OLS相比更具优势。根据OD起终点站域环境特征,考虑起终点缓冲区内各类兴趣点(point of interest,POI)数量、小区住户数、房价、人口数量、站点偏离距离以及出行距离等指标,构建OD强度关联指标体系,解释各指标对OD客流强度的正负反馈效应。SHAP归因分析说明,居民更倾向于14站以内的中短途出行,并分别得到了就业类POI数目对晨、早通勤客流正向影响,以及餐饮类POI数目对休闲中转出行客流正向影响的临界阈值。该方法可为轨道交通精细化出行引导和客流组织提供数据支撑,优化城市轨道交通供需平衡及服务水平。