关键词:
伪装目标检测
上下文信息
交叉细化
边缘感知
摘要:
基于边缘感知的模型是伪装目标检测的主流方法之一,其核心是在早期阶段输出边缘预测,能更好地定位和分割伪装目标。而在伪装目标数据集中,由于伪装目标与背景环境有很高的视觉相似性,对早期的边缘预测质量要求很高,错误的前景预测会导致分割不完整,甚至缺失目标,进而造成伪装目标分割效果不佳。为了解决这一问题,提出了一种边缘-分割交叉引导网络ECGNet。利用ConvNeXt模型作为骨干网络,通过1×1卷积对特征通道进行统一处理,在多尺度上提取全局上下文信息。设计了一个分割诱导边缘融合模块和一个边缘感知引导完整性聚合模块交叉融合,关注伪装目标的整体结构,不断细化分割特征和边缘特征。通过引导残差通道注意模块利用这些连接和卷积更好地提取低层特征中的结构细节。在CAMO、COD10K以及NC4K数据集上的实验结果表明,ECGNet性能优于其他22个具有代表性的模型,比HitNet在S_(α)、E_(ϕ)、F^(ω)_(β)和M方面的性能平均提升了0.019、0.019、0.018和0.009。