关键词:
蜂窝认知无线电网络(CCRN)
频谱接入
加权质心定位
KL散度
摘要:
在蜂窝认知无线电网络(Cellular Cognitive Radio Network,CCRN)中,主用户(Primary User,PU)与次级用户(Secondary User,SU)之间缺乏通信,单独依靠传统的频谱感知技术来判断频谱接入机会存在一定的不可靠性。提出一种基于KL(Kullback-Leibler)散度与邻居关系的改进加权质心定位(KL-divergence Based Weighted Centroid Localization,KLD-WCL)算法。首先计算未知节点与锚节点接收信号强度(Received Signal Strength,RSS)向量的KL散度值,表征两者的邻近程度;其次,提出一种自适应邻居选择算法,针对每一个未知节点自适应地选择最优的邻居锚节点。在采用KLDWCL算法获得SU位置信息的基础上,最终实现机会性接入授权频段的使能标签设置。所提方案有效减缓了RSS波动对于定位精度的影响,优化了邻居节点选择策略与加权方式。理论推导与实验结果表明,所提方案为CCRN中的SU定位算法提供了更为强健和良好的定位误差性能,能够有效增强蜂窝认知网络对于频谱接入的可靠性。