关键词:
离子液体
毒性
机器学习
图神经网络
模型
预测
可解释性
摘要:
离子液体对环境有潜在毒性,为了解其毒性机制,建立了三种传统机器学习(支持向量机,随机森林,多层感知机)和三种图神经网络(图注意力网络,消息传递神经网络,图卷积模型)模型,预测离子液体对大鼠IPC-81细胞等4种活生物体的毒性。凭借分子结构信息,图卷积模型在4个数据集中的RMSE和MAE均最低,R2均最高,因此,图卷积模型在预测离子液体毒性上更优越。同时,基于图卷积模型,建立毒性解释模型,从数据驱动上来分析原子基团对毒性的贡献。阳离子的芳香环和长烷基链会产生毒性,S^(+)、P^(+)、N^(+)、NH^(+)等原子基团会显著增强离子液体的毒性,而P^(-)、F、B^(-)、C等原子基团会有效降低离子液体的毒性。该发现可为快速筛选和开发更绿色低毒型离子液体提供理论依据。