关键词:
地球磁场
长短时记忆(LSTM)
长期变化
深度学习
中国大陆
摘要:
选取中国大陆及邻近地区32个地磁台站地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,通过月均值年差分得到主磁场各要素的长期变化序列,然后将深度学习方法应用到地球主磁场长期变化研究中,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型.预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)、归一化均方根误差(NRMSE)平均值为1.139'和0.040;H分量的RMSE、NRMSE平均值为11.85 nT和0.086;Z分量的RMSE、NRMSE平均值为15.10 nT和0.026,LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量.分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361(')/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 nT/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 nT/a,较线性外推法提高了47%,较二次外推法提高了57%.