关键词:
车联网
边缘计算
排队论
KNN
资源分配
强化学习
摘要:
高可靠和低延迟是目前车联网边缘计算网络中最重要的研究方向之一。为了满足车联网网络中复杂多变的任务请求,有效并且高效地分配通信资源和计算资源,提出了一种基于任务排队论模型和边缘计算模型相结合的智能通信和计算资源分配的多目标强化学习策略。该策略将通信资源和计算资源的分配相结合,以降低由延迟和可靠性组成的系统总成本。该策略可以被分解成3种算法,首先联合计算卸载与协作算法是该策略的一个通用框架,它首先使用KNN方法为生成的任务请求选择卸载层,如边缘计算层和本地计算层;然后,当选择本地计算层执行任务时,使用称为协作车辆选择的算法来查找执行协作计算的目标车辆;最后,通信和计算资源的分配被定义为两个独立的目标,称为多目标资源分配的算法在移动边缘计算层使用强化学习来实现问题的最优解。仿真结果表明,与随机计算、全部边缘计算和全部本地计算相比,所提策略有效地降低了系统的总成本。KNN方法和随机卸载方法相比,节省了系统的总成本,强化学习算法在系统总成本的控制上也优于传统的粒子群算法。