关键词:
滚动轴承
剩余寿命预测
ConvNeXt网络
堆叠双向长短时记忆网络
自注意力机制
深度学习
连续小波变换
摘要:
在滚动轴承剩余使用寿命预测方面,采用传统方法时存在鲁棒性差、精度低等各种问题。近些年来深度学习的发展为解决这些问题提供了新的思路。为了进一步提高对轴承寿命的预测精度,提出了一种基于ConvNeXt网络、堆叠双向长短时记忆网络(SBiLSTM)和自注意力机制(Self-Attention)的滚动轴承寿命预测方法。首先,采用连续小波变换(CWT)构造了振动信号的时频图,以更好地捕捉信号的时域和频域特征;然后,将得到的时频图输入到构建的ConvNeXt网络中,通过卷积、池化和层归一化等操作,对时频图的关键特征进行了提取;最后,将提取后的特征输入到SBiLSTM-Self-Attention模块中,进一步提取了时序信息和特征权重分配数据,利用PHM2012挑战数据集进行了验证,通过实验分析了该方法的均方根误差(RMSE)和平均绝对误差(MAE)。研究结果表明:相较于现有技术方法,该方法的平均RMSE为0.031;与其他三种方法,即卷积神经网络(CNN)、深度残差双向门控循环单元(DRN-BiGRU)和深度卷积自注意力双向门控循环单元(DCNN-Self-Attention-BiGRU)相比,其平均RMSE值分别下降了79%、74%和55%,MAE值分别下降了78%、73%和53%,说明该方法在滚动轴承剩余寿命预测中有较好的性能。