关键词:
树种识别
ConvNeXt
SimAM注意力机制
ECA通道注意力机制
摘要:
【目的】为提高树种识别工作的效率和准确率,提出一种利用迁移学习策略并引入SimAM注意力机制和ECA通道注意力机制的ConvNeXt树种识别模型。【方法】以12种常见树种的树皮图像为研究对象,通过传统数据增强方法对数据进行扩充,防止模型过拟合。使用SimAM和ECA通道注意力机制构建以ConvNeXt为基础的改进网络,增强特征提取的SA-ConvNeXt、增强重要特征权重的E-ConvNeXt、结合两者的ES-ConvNeXt,测试数据集在增强前后对ES-ConvNeXt网络准确率的影响。使用ResNet34、ResNet50、GoogLeNet、Swin Transformer、DenseNet121和ConvNeXt网络,与ES-ConvNeXt模型识别效果进行比较。【结果】SA-ConvNeXt和E-ConvNeXt准确率分别达到(95.14±0.42)%、(96.085±0.235)%,ES-ConvNeXt在增强后数据集测试的准确率达到(97.445±0.635)%,对单一树种识别准确率均超过93%,最高类别准确率达到99.79%,为最优方案。经数据增强后进行训练的模型与使用原始数据进行训练的模型相比,其验证集的准确率和损失值,无论是收敛速度还是最终稳定值都是最优。数据集相同时,使用ResNet34、ResNet50、GoogLeNet、Swin Transformer、DenseNet121和ConvNeXt网络的识别准确率,分别为92.74%、94.47%、90.52%、92.85%、70.38%、94.72%,均低于新改进模型ES-ConvNeXt(97.81%),进一步说明了改进后的ESConvNeXt模型的有效性。【结论】数据增强对模型准确率提升有效,在数据增强后的数据集上,改进后的ESConvNeXt模型与其他模型相比可以更加准确地完成树种分类任务,在不同树种上也有较好的泛化能力。