关键词:
均匀设计
超参数优化
卷积神经网络(CNN)
正交设计
机器学习
摘要:
卷积神经网络是人工智能的重要组成部分,在自然语言处理、图像识别等领域表现优异。卷积神经网络模型超参数配置涉及训练策略,在卷积神经网络大模型优化方面起着至关重要的作用。现有超参数优化方法耗时耗力,遍历整个超参数空间,容易陷入局部最优解。首先,构建3个不同深度的自建卷积神经网络作为优化对象,以提高模型在验证集上的准确率为优化目标找到最佳的超参数配置。其次,考虑优化神经网络大模型的训练过程并提高模型性能的需求,提出一种基于实验方案设计的卷积神经网络超参数优化方法。最后,为了验证方法的有效性,依据均匀设计理念构建训练方案,生成超参数优化组合,进行主观经验生成训练方案的对比实验。结果表明:所提出的优化方法在收敛速度、准确率和计算效率上更具优势。该方法为实现卷积神经网络大模型的高效训练提供支持,具有良好的通用性,可以应用于不同规模的卷积神经网络训练任务。