关键词:
新能源
改进卷积神经网络
短路电流预测
变分模态分解
注意力机制
摘要:
随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网络进行改进,利用多尺度特征提取将电流故障数据特征最大化,引入注意力机制提取重要信息,卷积过程中使用跳跃连接的方式防止前向传递时信息丢失,有利于提高预测的准确性,构建基于改进卷积神经网络的短路电流预测模型;最后,经过PSCAD/EMTDC电网模型进行验证。结果表明,所提方法对短路电流峰值预测有着较高的精度,与常见的极限学习机、支持向量机相比,平均相对误差分别降低了0.61%,1.09%,验证了文章所提方法的有效性。