关键词:
视频识别模型
对抗样本
损失函数
迁移攻击
交叉熵
摘要:
不同的视频识别模型具备不同的时间判别模式.在迁移攻击中,视频对抗样本生成时会对白盒模型的时间判别模式产生过拟合,从而导致对抗样本的迁移性较差.针对这一现象,提出了一种有效缓解该过拟合现象的算法.该算法通过抽帧的方式生成多个增广视频,放入白盒模型,反向传播得到增广梯度,然后对这些梯度进行归位并加权求和,获得最终的梯度信息,最终将梯度信息带入基于梯度的白盒攻击方法,如FGSM,BIM等,获得最终的对抗样本.对交叉熵损失函数进行了改进,交叉熵损失函数在指导对抗样本的生成时,优先目的是快速找到能够让模型分类错误的方向,而没有考虑分类结果与其他概率较高类别在语义空间的距离.针对这一现象,对经典的交叉熵损失函数进行了改进,增加了基于KL散度的正则项,基于该损失函数生成的对抗样本迁移性更强.在Kinetics-400以及UCF-101数据集上,以ResNet50和ResNet101为主干网络,分别训练了Non-Local,SlowFast以及TPN共计6个视频识别领域常用的模型.将上述模型中的一种作为白盒模型,对其余模型进行迁移攻击,实验证明了该方法的有效性.