关键词:
选通图像
YOLOv8n
遮挡目标
小目标
大卷积核
摘要:
激光选通成像技术在复杂环境下表现出色,但选通图像为灰度图像无法提供颜色信息,并且对比度较低,所以在进行小目标和遮挡目标检测时更加困难。为解决以上问题提出了一种改进YOLOv8n的选通图像目标检测算法。在特征提取的主干网络部分,使用大核卷积C2f-DSF更有效地捕获输入数据的全局信息。添加了多头注意力检测头Detect-SEAM模块,增强了特征提取和目标识别的能力。为了获取不同感受野的上下文信息,增强特征提取能力,使用了SPPF-M模块。采用上采样算子Dysample,减少特征信息的损失,从而提高小目标的检测精度。改进的YOLOv8n算法在选通图像数据集上mAP@0.5提高了2.4个百分点,mAP@0.5:0.95提高了1.8个百分点。为了验证改进的YOLOv8n算法的泛化性,选取KITTI数据集实验,相比于YOLOv8n算法改进YOLOv8n的mAP@0.5提高了4.3个百分点,mAP@0.5:0.95提高了3.5个百分点。