关键词:
车型识别
高阶空间交互
动态多尺度特征聚合
解耦检测头
摘要:
针对复杂交通场景下车型目标密集、遮挡而造成的车型识别精度低的问题,提出基于高阶空间特征聚合的车型识别算法。首先,在特征提取的下采样阶段,设计了HSIDM模块,实现更深层次的特征聚合,减少细小信息损失。其次,在特征融合部分设计了DMFAM模块,动态调整各尺度特征的权重,获取多尺度的上下文信息,以增强模型对多样化特征的适应能力。然后,设计解耦REL-Head检测头,将分类和回归任务拆解,避免任务混杂,增强局部特征的学习能力与抗干扰能力。最后,将本文模型部署到边缘设备进行测试。实验结果显示,本文算法在复杂度交通场景数据集BIT-Vehicle和UA-DETRAC上,m AP相较于原模型分别提升了0.7%和3.9%,并在边缘设备上可以流畅运行,具有较好的识别效果。表明所提出的方法能够有效提高车型识别的精度并应用于受限设备。