关键词:
自动导引小车
路径规划
任务调度
近端策略优化算法
强化学习
摘要:
自动引导车(AGV)是一种具有高度柔性和灵活性的自动化物料运输设备,可实现路径规划、任务调度和智能分配等功能。目前关于AGV最优路径与调度算法研究仍存在泛化性差、收敛效率低、寻路时间长等问题。因此,提出一种改进近端策略优化算法(PPO)。首先,采用多步长动作选择策略增加AGV移动步长,将AGV动作集由原来的4个方向基础上增加了8个方向,优化最优路径;其次,改进动态奖励值函数,根据AGV当前状态实时调整奖励值大小,提高其学习能力;然后,基于不同改进方法比较其奖励值曲线图,验证算法收敛效率与最优路径距离;最后,采用多任务调度优化算法,设计了一种单AGV多任务调度优化算法,提高运输效率。结果表明:改进后的算法最优路径缩短了28.6%,改进后的算法相比于PPO算法收敛效率提升了78.5%,在处理更为复杂、需要高水平策略的任务时表现更佳,具有更强的泛化能力;将改进后的算法与Q学习、深度Q学习(DQN)算法、软演员-评论家(SAC)算法进行比较,算法效率分别提升了84.4%、83.7%、77.9%;单AGV多任务调度优化后,平均路径缩短了47.6%。