关键词:
基酒
支持向量机
引导聚集算法
遗传算法
分类预测
摘要:
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。