关键词:
入侵检测
异常检测
生成对抗网络
图像编码
卷积神经网络
摘要:
针对现有的入侵检测方法未能有效考虑到数据特征之间的关联性以及在高维离散的数据集上检测精度不高等问题,提出了一种基于空间特征与生成对抗网络的网络入侵检测方法MBGAN。首先,设计了一种将数据转换成灰度图的转换方法,使得卷积核能够捕获到图像中更多的上下文空间信息流。其次,采用双向生成对抗网络模型进行异常检测,使用转换后的流量图像对模型进行训练,同时引入最小Wasserstein距离和梯度惩罚技术,解决模型训练中模式崩塌和不稳定问题。实验结果表明:所提方法在NSL-KDD、UNSW-NB15、CICIDIS2017数据集上的检测精度分别为97.4%,92.3%,94.8%,召回率分别为97.2%,93.1%,95.6%,F 1值分别为97.3%,93.0%,95.2%,效果均优于其他方法。