关键词:
相邻均值差
可逆信息隐藏
直方图平移
摘要:
为解决可逆信息隐藏(reversible data hiding,RDH)容量受限的问题,提出了一种基于相邻均值差的可逆信息隐藏(neighboring mean difference reversible data hiding,NMDRDH)算法。相邻均值差(neighboring mean difference,NMD):计算两个相邻数值的平均值与其中一个数值的差值,NMD将差值最小化,使数据更加集中。首先将图像进行分块,然后在分块上应用NMD生成差值直方图,最后通过平移差值直方图,利用峰值点来嵌入秘密信息。由于NMD使生成的差值直方图具有更多的峰值点,因此该方法可嵌入更多的秘密信息。实验结果表明,采用本算法,原始图像恢复率和秘密信息提取正确率均为100%;相比于经典差值直方图平移方法,本算法的嵌入容量提升了43.7%;本算法在保证高容量同时,PSNR达到42db以上,确保了嵌入图像失真较小。