关键词:
MobileNetV3
模糊场景
人车检测
轻量化
摘要:
针对雾霾、雨雪等恶劣天气下拍摄到的图像退化模糊,难以进行准确识别与检测的问题,本文提出模糊场景下行人与车辆检测算法LiteBlurVisionNet (轻模糊视觉网络).在主干网络部分使用GlobalContextEnhancer注意力改进轻量级MobileNetV3模块,减少了参数量,使得模型在雾霾、雨雪等恶劣天气条件下图像处理效率更高.颈部网络采用更为轻量化的Ghost模块和由GhostBottleneck模块改进的SpectralGhostUnit模块,能够更有效地捕获全局上下文信息,提高特征的区分度和表达能力,有助于减少参数数量和计算复杂度,从而提高网络处理速度和效率;预测部分采用DIoU NMS基于非极大抑制方法进行最大局部搜索,去除冗余的检测框,提高检测算法在模糊场景下的准确性.实验结果表明, LiteBlurVisionNet算法模型的参数量比RTDETR-ResNet50算法模型下降了96.8%,比YOLOv8n算法模型下降了55.5%, LiteBlurVisionNet算法模型的计算量比Faster R-CNN算法模型下降了99.9%,比YOLOv8n算法模型下降了57%, LiteBlurVisionNet算法模型的mAP0.5比IAL-YOLO算法模型提高了13.71%,比YOLOv5s算法模型提高了2.4%,这意味着模型在存储和计算方面更加高效,尤其适用于资源受限的环境或移动端设备.