关键词:
无迹卡尔曼滤波
系统噪声协方差矩阵
人工蜂群算法
偏好随机游动
动态扰动因子
摘要:
针对无迹卡尔曼滤波(UKF)算法在状态估计时异常系统噪声协方差矩阵影响滤波性能的问题,提出一种利用改进人工蜂群优化UKF的算法。首先,在UKF算法过程中引入IABC算法对系统噪声协方差矩阵寻优选择,从而实现自适应调节系统噪声协方差矩阵,提高估计精度;其次,对传统ABC算法采用Circle混沌初始化策略,增加人工蜂群初始种群的多样性;同时采用偏好随机游动策略,平衡算法的开发与探索能力,增强算法的稳定性;最后,通过动态扰动因子策略增强算法后期寻找最优解的能力,提高收敛速度,进一步优化算法性能。实验结果表明,相较于ABC算法,IABC算法在寻优性能上有明显提升。同时,通过对比UKF算法和IABC-UKF算法,验证了IABC-UKF算法的可行性,其位置均方根误差不大于1.4 m,表明该算法滤波效果较好且误差波动小,能够有效提高估计精度。