关键词:
YOLOv5s
遥感图像
舰船目标检测
可变形卷积
圆形平滑标签
摘要:
[目的]针对遥感图像舰船目标检测任务中轻量化和快速推理的需求,提出一种基于改进YOLOv5s的轻量化遥感舰船目标检测算法LR-YOLO。[方法]首先,主干网络采用ShuffleNet v2 Block堆叠方式,有效减少算法的参数量并提高计算速度;其次,设计区域选择模块Filter,选择感兴趣的区域,更充分地提取有效特征;最后,引入圆形光滑标签计算角度损失,对遥感舰船目标进行旋转检测,并采用可变形卷积,以此来适应几何形变,提升检测效果。[结果]在HRSC2016舰船数据集上的实验结果表明,该算法的检测精度达到92.90%,提高1.3%,并且算法参数量仅为基线模型的39.33%。[结论]该算法实现了轻量化和检测准确率的平衡,为轻量化遥感舰船目标检测提供了参考。