关键词:
深度学习
计算机视觉
目标检测
轻量化神经网络
特征提取网络
特征融合网络
特征增强
摘要:
针对视觉安防系统在边缘计算平台部署火焰检测模型时面临的精度与实时性难以平衡的问题,提出一种渐进自适应特征融合的轻量化火焰检测算法。首先,设计轻量级稀疏卷积算子降低模型计算复杂度与内存访问开销。其次,针对分组卷积的通道间信息交互缺陷,基于残差思想构建长距离上下文特征增强的轻量级特征提取组件。为解决深度骨干网络中特征丢失及背景干扰问题,创新性地提出基于高频增强的轻量级特征强化机制,优化空间域和通道域参数,缓解背景干扰问题。在此基础上,建立特征增强-渐进自适应特征融合框架,促进不同尺度特征图充分融合,提高特征图利用率,增强对多尺度目标的识别效果。实验结果表明,所提方法在实时推理速度最高达到27.1 FPS的同时,参数量降低至2.1×10^(6),较基准模型减少69.5%,并达到83.4%的mAP@0.5检测精度,显著优于现有主流方法。