关键词:
半监督学习
降噪自编码器
稀疏自编码器
特征提取
分类预测
摘要:
在工业分类预测中,有标签数据稀缺且标记成本高,导致模型预测不准确,同时大多数无标签数据中的特征未得到合理利用,模型的泛化能力不足。为了解决这个问题,提出半监督深度自编码网络(SSup-DDSAE-Link),将有标签数据和无标签数据通过有监督学习和无监督学习进行结合,提升模型预测准确率。该模型首先在深度自编码通道上,分别添加高斯噪声和稀疏性约束,提取与分类相关且更具代表性的特征表示;其次在编码器与解码器之间引入横向连接,过滤与分类任务不相关的信息,使得网络能够更好地学习关键变量的特征表示,并在网络顶层添加有监督学习路径来实现分类识别;然后添加原始编码器,与解码器中对应隐含层的输出一起训练,从而构造无监督学习路径,有效利用无标签数据中的信息;最后通过有监督损失函数与无监督损失函数构造总损失函数,实现对工业生产中关键变量的分类预测。实验结果表明,与常用的有监督学习模型和传统的半监督学习模型相比,SSup-DDSAE-Link的分类预测准确率得到了有效提高,并且精确率、召回率和F1值均得到提升。