关键词:
页岩岩相预测
XGBoost算法
变量选择
参数调优
测井信息
摘要:
页岩岩相的识别与预测对于分析确定页岩油气甜点层段非常重要。在缺乏岩心信息进行单井岩相研究时,测井数据扮演着十分重要的角色,而基于XGBoost算法可以充分挖掘多维测井数据所揭示的页岩岩相信息,从而达到预测单井页岩岩相的目的。本研究应用具有监督学习算法的XGBoost机器学习方法,利用常规测井数据作为变量数据集,建立了可预测页岩岩相类型的计算模型。首先建立适合具体研究区的页岩岩相划分标准,该标准应能体现研究区页岩岩相的辨识差异性,再根据统计含量占比的方法,确定不同岩相的具体矿物含量和TOC含量界限。在建立计算模型时,相关变量可能会提供相似的信息,导致模型过于依赖这些特征,需注意去除相似信息。XGBoost算法在参数优选方面,其网格搜索具有全面性,在网格搜索过程中应该进行多次优选,不断缩小搜索范围以求取最优值。以松南地区赞字井区块为例,采用矿物组分含量、沉积构造及TOC建立页岩岩相划分标准,可划分出5类主要页岩;在应用XGBoost算法进行变量优选时,对于具有较高相关性的LLD和LLS曲线,保留一个即可,结果表明模型准确率可提高4%左右;经过变量选择及参数调优后,最终模型预测岩相的准确率可达90.03%。