关键词:
路面病害检测
形状特征
可形变注意力
分组卷积空间金字塔
YOLOv8
摘要:
路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YOLO)。构建一种无信息丢失的加强特征提取模块,通过保留多维度空间特征信息,增强骨干网络对低分辨率图像和细小病害目标的特征提取能力;引入可形变注意力特征融合模块,利用病害细长形状特征拓展目标识别区域,提高模型对于长距离病害目标的特征表达能力;运用分组卷积空间金字塔池化模块,强化不同尺寸病害目标特征识别;采用轻量级共享卷积检测头,减少网络参数量和计算量。实验结果表明,提出的方法对不同类别的路面病害目标均获得了较好的效果,在RDD2022数据集上的平均精度达到67.3%,与原算法相比提升了5.3个百分点,整体性能优于其他路面病害检测算法。