关键词:
航材需求预测
主成分分析
改进粒子群算法
最小二乘支持向量机
摘要:
为解决航材备件需求预测中,因航材消耗影响因素多,样本数据量少从而造成预测效果差等问题。提出一种基于主成分分析(principal component analysis,PCA)与改进粒子群算法(improved particle swarm optimization,IPSO)及最小二乘支持向量机(least square support vector machine,LSSVM)的航材备件需求预测模型,首先利用主成分分析法筛选出航材备件主要影响因素,然后使用改进粒子群算法优化最小二乘支持向量机参数组合,最后使用筛选结果及优化参数组合完成PCA-IPSO-LSSVM航材备件需求预测模型训练。与其他4个预测模型相比,PCA-IPSO-LSSVM模型预测精度最高,测试集的均方根误差(root mean squared error,RMSE)和平均相对误差(mean relative error,MRE)分别为3.24和4.23%,表明模型具有较好的预测精度和拟合效果。