关键词:
弹性波场
P-S波波场分解
全卷积神经网络(FCN)
弹性波成像
摘要:
纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场分解。该网络由全卷积神经网络构建,使用合成波场快照进行训练,训练完成的网络类似空间滤波器,可实现高精度的P-S波波场分解。不同于基于傅里叶变换的P-S波波场分解方法,该方法可以在波场任意空间位置处开展P-S波波场分解,因此适用于面向目标的地震成像。合成数据的计算示例表明,基于全卷积神经网络的纵横波波场分解方法可有效分解P波和S波波场,且精度高于其他空间域分解方法。弹性波逆时偏移成像结果表明,使用基于全卷积神经网络(FCN)的P-S波波场分解方法所获得的基于P波和S波的地震波成像结果,可有效减少速度界面处的成像假象,提高复杂地质条件下的多波成像精度。