关键词:
Swin-Transformer
Unet
图像去噪
地震数据
摘要:
随机噪声作为非相干噪声的主要组成部分,一直是地震资料处理的重点和难点。传统随机噪声压制方法在处理地震数据时容易出现伪影、边缘信息模糊等问题,有必要开发一种基于深度学习的随机噪声压制方法,通过直接学习图像的深层特征实现去噪。鉴于Swin-Transformer能够有效挖掘图像的深层信息,提出一种基于Swin-Transformer的改进去噪方法。该方法采用编码器—解码器的Unet框架,采用一长一短双通道并行提取编码器中的多个维度特征,并引入新的特征融合机制来合并这些特征,最终由解码器重现提取到的有用信息。采用实际工区数据进行测试,实验结果表明,与当前主流深度学习模型相比,所提方法的SNR和SSIM分别最高提升2.33 dB和0.07,去噪性能优异。