关键词:
激光干涉测量
包裹相位
噪声抑制
AFNVENet网络
摘要:
包裹相位是激光干涉测量获取相位信息的前提,为了减小测量过程中噪声对包裹相位条纹的干扰,提高重构图像的质量,提出了一种非对称融合非局部边缘提取神经网络(Asymmetric Fusion Non-Local and Verge Extraction Neural Network,AFNVENet)。该网络在FFDNet基础上,设计了非对称融合非局部块和边缘提取模块,通过融合不同级别噪声特征及反向引导去噪过程,在有效抑制多等级噪声的同时,保留了更多的图像细节信息。选择带有乘性散斑与加性随机噪声的包裹相位数据集用于训练,通过消融实验和对比实验结果表明,AFNVENet算法对不同等级的噪声都具有更好的噪声滤除效果,当噪声标准差在[0,2.0]范围内变化时,去噪后的PSNR、SSIM和SSI均值分别达到24.88 dB,0.97和0.95。此外,通过进一步解包裹结果表明,AFNVENet去噪后的解包裹相位均方根误差均值比SCAF,NLM,KSVD和DnCNN分别减小了87%,73%,79%和36%,验证了该方法的可行性。AFNVENet方法在抑制噪声时具有较好的鲁棒性,可适用于不同干涉测量环境下多等级噪声的包裹相位信息恢复。