关键词:
中压直流配电网
短期负荷预测
样本噪声
超参数优化
轻量型梯度提升机
摘要:
为提升直流配电网中的短期负荷预测准确性与抗噪性,提出了一种基于超参数优化(hyperparameter op-timization,Hyperopt)-轻量型梯度提升机(light gradient machine,LightGBM)的短期负荷抗噪声预测模型。首先,以环形中压直流配电网为场景,分析4种负荷的基本特征及其与历史数据(记为影响因素)的相关性,通过将相关性较强的影响因素作为输入,避免预测模型过拟合现象,从而提高负荷预测准确性及模型训练效率。然后,构建基于Hyperopt-LightGBM的中压直流配电网短期负荷预测模型,通过训练强学习器提高模型的抗噪性,进一步提高短期负荷预测准确性;通过Hyperopot提高模型自适应性,减轻人工调参负担。最后,基于直流配电网的4种负荷数据验证所提模型的有效性,不同预测模型下4种负荷的平均预测误差分别为:≤1.6%(所提模型),≤2.1%(极限梯度提升机模型),≤2%(随机森林模型)和≤4.1%(梯度提升决策树模型);不同噪声比下所提模型预测准确性>95%,且均高于传统模型。上述结果表明所提模型预测准确性更高、抗噪性及自适应性更好。