关键词:
赤点石斑鱼
氨氮应激行为表征
YOLO v5
Ocsort
嵌入式系统部署
摘要:
基于应激行为学的赤点石斑鱼应激行为表征是实现赤点石斑鱼氨氮胁迫识别的前提与基础,但现有方法大多依赖于高性能硬件,不利于行为表征方法在养殖现场嵌入式系统上部署和应用。针对这一问题,结合赤点石斑鱼氨氮胁迫环境下活动量减少、躯体痉挛失衡等症状,提出了一种基于轻量化检测跟踪算法的赤点石斑鱼氨氮应激行为表征方法。首先使用GhostV2卷积对YOLO v5s进行轻量化改进,采用AFPN来支持不同维度特征直接融合,消融对比实验结果表明,改进后轻量化模型准确率和召回率分别为94.3%和89.5%,平均精度均值为96.2%,较改进前提高1.6个百分点,模型内存占用量约为轻量化前模型的60%。为了减少在复杂环境中跟踪时赤点石斑鱼ID频繁跳变的问题,本文在Ocsort中嵌入了一个轻量级的外观特征提取网络并在目标关联时将目标的外观相似度矩阵引入总匹配代价矩阵;对比实验结果表明,改进后跟踪算法MOTA和IDF1分别为94.7%和69.3%,比YOLO v5s与OC-SORT的检测跟踪算法分别提高3.2、6.7个百分点。最终结合石斑鱼氨氮应激行为学研究结果,选用赤点石斑鱼平均运动速度、躯体失衡石斑鱼数量来表征赤点石斑鱼氨氮应激行为,行为识别准确率为92.2%,可准确检测出赤点石斑鱼是否处于氨氮胁迫环境中。本文的轻量化表征方法可部署到Jetson Orin Nano嵌入式系统上,平均运行速度为6 f/s,可为工厂化赤点石斑鱼养殖氨氮胁迫的高效实时识别提供技术支撑。