关键词:
泥石流
最小二乘支持向量回归
混合核函数
加权核主成分分析
概率预测
摘要:
针对引发泥石流灾害的多重影响因素而导致的预测维数灾难,以及最小二乘支持向量回归(least squares support vector regression,LSSVR)模型中选取单核函数而导致的模型训练性能部分缺陷的问题,提出了一种基于改进的核主成分分析(kernel principal component analysis,KPCA)与混合核函数LSSVR的泥石流灾害预测方法.首先,将影响泥石流发生的7种初始因子赋予权重,利用加权KPCA法筛选出3个主成分影响因子作为模型输入;然后,将局部核函数与全局核函数相结合,运用到LSSVR模型上,进行泥石流发生概率预测,以平衡样本学习能力与泛化能力,并使用果蝇优化算法(fruit fly optimization algorithm,FOA)更新模型的最优参数;最后,以磨子沟监测数据进行仿真验证.结果表明,该方法能够有效地降低维数灾难并提升预测模型精确度,在误差允许范围内预测出泥石流发生概率值及对应的预警等级,为相关决策部门提供一定的借鉴经验.