关键词:
泥石流
危险性预测
BP神经网络
传递函数
摘要:
泥石流危险性预测的可靠性是防治工程建设与减灾救灾相关工作部署的关键,基于Back Propagation神经网络的预测方法,是目前实现危险性等级划分的有效方法之一。利用BP神经网络算法的非线性逼近能力,挑选陇南白龙江小流域26条典型泥石流沟道,结合当地实际情况,选取泥石流危险性的8个主要因素为输入层神经元,以样本数据危险等级为输出神经元,在测试单、双层隐含层网络性能的基础上,提出9种工况组合的传递算法搭配方案,利用L-M算法搜索最优解或者近似最优解,总结传递算法对泥石流预测模型精度的影响及算法的选择顺序。实验结果显示,隐含层采用tansig函数,输出层采用logsig函数,其模型总体误差最小,模型的R训练集、R验证集较大与R测试集分别为0.98361、0.70917和0.96052,准确率达到96.1%。由此可见,选择合适的传递函数可提高网络模型的精准度,能准确划分泥石流风险等级。