关键词:
Algorithms
Quantum mechanics
Mathematical methods
Circuits
Hamiltonians
摘要:
Simulating molecular dynamics (MD) within a comprehensive quantum framework has been a long-standing challenge in computational chemistry. An exponential scaling of computational cost renders solving the time dependent Schrodinger equation (TDSE) of a molecular Hamiltonian, including both electronic and nuclear degrees of freedom (DOFs), as well as their couplings, infeasible for more than a few DOFs. In the Born-Oppenheimer (BO), or adiabatic, picture, electronic and nuclear parts of the wave function are decoupled and treated separately. Within this framework, the nuclear wave function evolves along potential energy surfaces (PESs) computed as solutions to the electronic Schrodinger equation parametrized in the nuclear DOFs. This approximation, together with increasingly elaborate numerical approaches to solve the nuclear time dependent Schrodinger equation (TDSE), enabled the treatment of up to a few dozens of degrees of freedom (DOFs). However, for particular applications, such as photochemistry, the BO approximation breaks down. In this regime of non-adiabatic dynamics, solving the full molecular problem including electron-nuclear couplings becomes essential, further increasing the complexity of the numerical solution. Although valuable methods such as multiconfigurational time-dependent Hartree (MCTDH) have been proposed for the solution of the coupled electron-nuclear dynamics, they remain hampered by an exponential scaling in the number of nuclear DOFs and by the difficulty of finding universal variational forms. In this Account, we present a perspective on novel quantum computational algorithms, aiming to alleviate the exponential scaling inherent to the simulation of many-body quantum dynamics. In particular, we focus on the derivation and application of quantum algorithms for adiabatic and non-adiabatic quantum dynamics, which include efficient approaches for the calculation of the BO potential energy surfaces (PESs). Thereafter, we study the time-evoluti