关键词:
脑卒中
人工智能算法
院前急救
无创筛查
DeepFM模型
摘要:
目的基于人工智能算法构建预测患者脑卒中严重程度的院前无创筛查预测模型,为脑卒中患者及家属提供筛查指导和预警作用,为临床决策提供数据支持。方法采用回顾性研究方式,从大连医科大学附属第二医院医渡云大数据服务器系统中提取就诊时间为2001年1月1日至2023年7月31日的脑卒中患者(n=53?793)的临床信息。结合单因素筛选结果以及神经内科高级职称专家意见确定输入变量,输出变量为入院时反映病情严重程度的美国国立卫生研究院卒中量表(NIHSS)评分。采用Python 3.7构建DeepFM算法模型,并同时构建Logistic回归、CART决策树、C5.0决策树、贝叶斯神经网络、深度神经网络(DNN)等5种数据挖掘模型。将原始数据随机分为80%训练集和20%验证集,分别用于训练和测试模型,调整各模型参数,分别计算6种模型的准确度、敏感度、F指数,进行模型的综合评价;绘制受试者工作特征曲线(ROC曲线)和校准曲线,对比DeepFM模型与其他5种数据发掘模型的预测性能。此外,提取大连市中心医院脑卒中患者(n=1?028)的数据进行模型的外部验证。结果共筛选出14?015例信息完整的脑卒中患者,其中训练集11?212例,验证集2?803例。经单因素筛选后纳入14个指标用于构建模型,即性别、年龄、复发、肢体障碍、面部问题、言语障碍、头部反应、意识障碍、视觉障碍、呛咳吞咽异常、危险因素、家族史、是否吸烟、是否饮酒。DeepFM模型采用两阶交叉特征,DNN层隐藏层层数为3层,使用Dropout丢弃神经网络中的神经元,Rule作为激活函数,各层采用Dense全连接,目标函数为随机梯度下降,迭代次数为15次,训练参数共133?922个。比较6个模型的预测价值,DeepFM模型的准确度为0.951、敏感度为0.992、特异度为0.814、F指数为0.950,曲线下面积(AUC)为0.916;其他5种数据挖掘模型的准确度在0.771~0.780,敏感度在0.978~0.987,F指数在0.690~0.707,AUC介于0.568~0.639。DeepFM模型的校准曲线较其他5种数据挖掘模型更贴合理想曲线。提示DeepFM模型的预测性能最好。对DeepFM模型进行外部验证,其准确度为0.891,说明模型的泛化性能良好。结论基于DeepFM构建的院前无创筛查预测模型能够较为准确地预测脑卒中患者严重程度分级,在脑卒中快速筛查和早期临床决策中具有潜在的应用价值。