关键词:
酸性矿坑水
自组织映射网络
污染评估
聚类分析
摘要:
酸性矿坑水(Acid Mine Drainage,AMD)是煤炭开采过程中产生的主要环境问题之一,对生态系统和人类健康构成严重威胁。该研究选取福建龙岩林坑煤矿为研究区,运用自组织映射(Self-Organizing Map,SOM)技术对研究区AMD污染特征进行系统的聚类分析,旨在准确评估该区域AMD污染现状并有效识别主要污染源。本研究利用SOM方法对37个水样的4种水质指标(pH、Fe、Mn和SO_(4)^(2-))进行综合分析,最终将水样划分为4个不同污染程度的聚类,明确揭示了不同污染程度水体的空间分布特征。各聚类按污染程度从高到低顺序,依次为聚类Ⅳ、聚类Ⅲ、聚类Ⅱ和聚类Ⅰ,其中聚类Ⅲ和聚类Ⅳ的样本表现出严重的污染特征,主要位于煤矿涌水点和煤矸石堆放区附近,是未来治理工作的重点;聚类Ⅱ的样本主要受污染水流汇入的影响;聚类Ⅰ包含样本量最多,表明该区域大部分水体受AMD影响程度有限。SOM方法为AMD污染特征的评估提供了有效工具,具有推广至其他煤矿区的应用潜力。未来研究需增加监测频率,以捕捉季节性变化对水质的影响。随着监测数据量的不断增加,SOM方法的应用潜力将更加明显。