关键词:
二氧化硅
掺杂
拉曼光谱
吸收光谱
发光性能
摘要:
SiO_(2)纳米材料作为典型的纳米绝缘材料,其量子尺寸限制效应和不同类元素独特的光电特性相结合,在生物医药方面及纳米器件集成电子领域具有广泛应用。随着科学时代的到来,研究成果日益增加,稀土掺杂纳米发光材料的研究工作逐渐展开,其应用范围也很广阔,如:信息显示、激光材料、光纤通信、甚至荧光探测。Sm^(3+)是一种重要的稀土氧化物离子材料,它在太阳能电池、纳米电子器件、半导体玻璃、生物化学传感器和纳米磁体等领域具有潜在应用。本研究使用热蒸发法合成了Sm^(3+)掺杂SiO_(2)纳米棒材料。通过扫描电镜、X射线衍射谱和拉曼散射光谱等手段对样品进行分析发现:Sm^(3+)掺杂SiO_(2)纳米棒为四方相晶体;随沉积温度降低,纳米棒直径增大,沉积密度减少,样品形貌由纳米棒状结构逐渐变为微米颗粒;由于Sm^(3+)离子半径较大,导致掺杂后SiO_(2)晶格衍射向小角度偏移,晶格常数增加,晶胞体积增大。Sm^(3+)掺杂SiO_(2)纳米棒的生长过程没有金属催化剂的影响。在饱和蒸汽压和Ar气流作用下,气态SiO_(2)会顺着气流方向沉积在温度不同的衬底区域上。在高温区优先沉积成晶核,由于腔体内残余氧气含量逐渐被消耗降低,纳米线在生长过程中直径逐渐减小,导致生成物顶部为针状。我们推断在衬底生成纳米线的同时Sm^(3+)替代少量Si^(4+)进入SiO_(2)晶格中。而在低沉积温度的基底上,随着腔体内氧含量降低,原子扩散驱动力弱,限制一维结构的生长,易生长出零维结构。Sm^(3+)掺杂SiO_(2)纳米棒的制备遵循气-固(VS)生长机制。Sm^(3+)掺杂SiO_(2)纳米棒的光学性能使用紫外吸收光谱、光致发光光谱进行分析,发现了Sm^(3+)掺杂纳米材料会促进晶体结构由单斜晶相向四方晶相的转换,进而引起UV谱中吸收带蓝移,文中实验制备的四方结构SiO_(2)纳米材料紫外吸收边蓝移,对应的带隙增大了0.7~0.8 eV。当受到激发后,不同于传统的无掺杂SiO_(2)纳/微米材料,Sm^(3+)离子掺杂后SiO_(2)将能量传递给Sm^(3+),材料展示出良好的Sm^(3+)稀土离子特征发光性能。该研究对SiO_(2)材料在光信息领域的应用具有重要指导意义。