关键词:
Thyristors
摘要:
Renewable power-to-hydrogen (ReP2H) systems require rectifiers to supply power to electrolyzers (ELZs). Two main types of rectifiers, insulated-gate bipolar transistor rectifiers (IGBT-Rs) and thyristor rectifiers (TRs), offer distinct tradeoffs. IGBT-Rs provide flexible reactive power control but are costly, whereas TRs are more affordable with lower power loss but consume a large amount of uncontrollable reactive power. A mixed configuration of rectifiers in utility-scale ReP2H systems could achieve an decent tradeoff and increase overall profitability. To explore this potential, this paper proposes an optimal investment portfolio model. First, we model and compare the active and reactive power characteristics of ELZs powered by TRs and IGBT-Rs. Second, we consider the investment of ELZs, rectifiers, and var resources and coordinate the operation of renewables, energy storage, var resources, and the on-off switching and load allocation of multiple ELZs. Subsequently, a two-stage stochastic programming (SP) model based on weighted information gap decision theory (W-IGDT) is developed to address the uncertainties of the renewable power and hydrogen price, and we apply the progressive hedging (PH) algorithm to accelerate its solution. Case studies demonstrate that optimal rectifier configurations increase revenue by at most 2.56% compared with using only TRs or IGBT-Rs, as well as those in existing projects. Under the optimal portfolio, reactive power compensation investment is nearly eliminated, with a preferred TR-to-IGBT-R ratio of 3:1. Copyright © 2025, The Authors. All rights reserved.