关键词:
寿命预测
卷积优化算法
高斯-柯西变异
混沌映射
摘要:
针对绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)剩余使用寿命的准确预测问题,提出了一种基于多策略改进优化的二维卷积优化算法(Convolution Optimization Algorithm on mixed strategies,COAM)的IGBT剩余寿命预测模型。通过改进和优化极限学习机(Extreme Learning Machine,ELM)参数,利用NASA研究中心公开的IGBT老化加速试验数据集,分析并提取了集射极-发射极阻断电压的失效特征参数,以获取阻断电压尖峰信息。针对COA算法在前期容易陷入局部极值和后期寻优精度不高的问题,首先选择通过Fuch映射序列初始化种群增强初始种群的随机性和变异性,然后采用新的综合位置更新方式来扩展算法的局部搜索能力,并引入高斯-柯西变异机制来改进解质量增强机制。最后,将该算法用于ELM参数的优化,以应用于IGBT剩余寿命的准确预测。通过将COAM-ELM与其他3种优化算法优化ELM方法进行对比分析,结果显示COAM-ELM方法在IGBT剩余寿命预测方面具有高精度的特点。本研究提出的方法可为其他IGBT剩余寿命预测方法提供参考依据。