关键词:
脑电图
癫痫
离散小波变换
自编码器
分类器
摘要:
为了准确地目视检查和解释脑电图(EEG),提出了一种用于识别EEG信号中癫痫发作信号的异常检测方法。首先,使用小波变换将EEG信号分解为近似和细节系数,并根据阈值准则剔除不显著系数,以限制小波系数的数量;其次,采用自编码器对离散小波系数进行编码;然后,对EEG信号进行分析以检测异常值,通过压缩特征集进行数据重构,利用分类器从无癫痫信号中检测癫痫发作信号;最后,使用波恩大学数据库,将所提方法与既有方法进行比较。所提方法中采用了线性和非线性机器学习分类器从EEG信号中检测癫痫发作信号。实验结果表明,该方法的准确率和特异性分别达到了99.93%和100%。因此,所提方法具有良好的检测能力和鲁棒性,可以用简单的线性分类器识别EEG信号中的癫痫发作信号,适用于时间序列信号分析,同时能够检测和判断异常,也可为癫痫的诊断、治疗和评估提供客观参考,从而减轻医生的工作量,提高治疗效率。