关键词:
砂带磨损
图像识别
天鹰算法
参数优化
特征提取
摘要:
为了准确判断砂带在磨削螺杆转子时的磨损程度,根据砂带磨损过程中表面图像颜色特征和纹理特征的变化规律,对砂带磨损程度进行识别。对磨削加工后砂带表面图像的纹理特征和颜色特征进行提取,根据不同磨削时间段螺杆转子表面粗糙度划分砂带磨损程度。支持向量机的分类性能受到自身核函数与惩罚函数的影响较大,因此提出利用天鹰优化算法对支持向量机的核参数与惩罚参数进行优化,建立AO-SVM砂带图像识别磨损程度模型。利用自主研发的螺杆转子专用砂带磨削装置完成实验。磨削参数设置如下:砂带线速度为10 m/s,工件轴向进给速度为50 mm/min,张紧轮的气缸压力为0.35 MPa,主动轮的气缸压力为0.5 MPa,磨削时间为25 min。AO-SVM对砂带磨损程度模型的识别准确率达到92.5%,比随机森林算法(RFC)和XGboost分类算法分别高出5.0%和3.6%,且收敛速度更快。AO-SVM模型可以通过砂带表面图像的颜色特征变化和纹理特征变化对砂带磨损程度进行识别,可以有效避免砂带磨损过度损伤工件,为砂带磨削螺杆转子时判断砂带的磨损程度和换带时间提供理论指导。