关键词:
激光熔覆
WC增强镍基涂层
微观组织
耐腐蚀性能
摩擦磨损性能
摘要:
本文采用激光熔覆技术在Q345钢表面熔覆两种镍基涂层,并分析两种涂层的微观组织、相结构,以及涂层对Q345钢的硬度、耐腐蚀和耐磨损等性能的影响。结果表明,WC增强镍基涂层与Q345钢基体形成良好的冶金结合,表面无明显缺陷;涂层内丰富的镍铁金属间化合物Ni3Fe,还有分解的次生碳化物W2C等。这些微观组织、结构使得复合涂层具有更高的显微硬度和更好的耐蚀性能。其中相较于Ni2涂层,Ni1涂层具有更小的腐蚀电流和更大的腐蚀电压,防腐性能好,发生腐蚀的倾向小;同时Ni1涂层也具有更高的硬度和更为优异的耐磨性能。In this paper, two kinds of nickel-based coatings are melted on the surface of Q345 steel by laser cladding technology, and the microstructure and phase structure of the two coatings are analyzed, as well as the effect of the coatings on the hardness, corrosion resistance, and abrasion resistance of Q345 steel and other properties. The results show that the WC-reinforced nickel-based coatings form a good metallurgical bond with the Q345 steel matrix, with no obvious defects on the surface;the coatings are rich in nickel-iron intermetallic compounds Ni3Fe, as well as decomposition of secondary carbides W2C and so on. The microstructure and structure make the composite coating have higher microhardness and better corrosion resistance. Compared with Ni2 coating, Ni1 coating has smaller corrosion current and larger corrosion voltage, good corrosion resistance and small tendency to corrosion;at the same time, Ni1 coating also has higher hardness and more excellent wear resistance.